Trigonometry Ratios: sine, cosine, tangent, cotangent, secant, cosecant

given
a. $\tan \theta=\frac{1}{5}$
b. $\sin \theta=1.5^{\text {or }} \frac{3}{2}$
c. $\sec \theta=\frac{\sqrt{3}}{6}$
find
$\cot \theta=\frac{5}{1}=5$
$\csc \theta=\frac{2}{3}$
$\cos \theta=\frac{6}{\sqrt{3}} \sqrt{3} \sqrt{3}=\frac{6 \sqrt{3}}{3}$
$=2 \sqrt{3}$

Use your special triangles to complete chart:

$\stackrel{\ominus}{\text { (degrees) }}$		$\sin \theta$	$\cos \theta$	$\tan \theta$	${ }_{\text {csce }} \mathrm{Cl}$	sec θ	cot θ
30°	$\frac{\pi}{6}$	$\left(\frac{1}{2}\right)$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}=\sqrt{\frac{\sqrt{3}}{3}}$	$\left\lvert\, \begin{gathered} 1+1 p \\ 2 \\ 1 \\ 1 \end{gathered}=\left[\begin{array}{l} \end{array}\right.\right.$	$\frac{2}{\sqrt{3}} \frac{\sqrt{2}}{3}$	彦= -
45°	$\frac{\pi}{4}$		$\Rightarrow \frac{\sqrt{2}}{2}$		lip		
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\left(\frac{1}{2}\right)$				

Check answers using this chart...or see textbook page 483 or ebook 6.2 "special triangles."

θ in degrees	θ in radians	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Note: $\sin 30^{\circ}=\cos \mathbf{6 0}^{\circ}$
$\sin 45^{\circ}=\cos 45^{\circ}$ $\sin 60^{\circ}=\cos 30^{\circ}$ $\sin 10^{\circ}=\cos 80^{\circ}$

$\tan 30^{\circ}=\cot \underline{\mathbf{6 0}^{\circ}}$	$\sec 30^{\circ}=\csc \mathbf{6 \mathbf { 0 } ^ { \circ }}$		
$\tan 45^{\circ}=\cot \underline{\mathbf{4 5}}$	$\sec 45^{\circ}=\csc \underline{\mathbf{4 5}}$		
$\tan 60^{\circ}$	$=\cot \underline{\mathbf{3 0}}$	\quad	$\sec 60^{\circ}=\csc \mathbf{3 0 ^ { \circ }}$
:---			

Complementary angles add to 90°
(equal ratios)
6.2 \#28 Sketch a triangle that has acute angle θ and find the other 5 trig ratios of θ.

$$
\begin{aligned}
& \cot \theta=\frac{5}{3} \quad \tan \theta=\frac{3}{5} \\
& \sin \theta=\frac{3}{\sqrt{3} 4}=\frac{3 \sqrt{34}}{34} \quad \csc \theta=\frac{\sqrt{34}}{3} \\
& \cos \theta=\frac{5}{\sqrt{34}}=\frac{5 \sqrt{34}}{34} \sec \theta=\frac{\sqrt{34}}{5} \\
& 5^{2}+3^{2}=c^{2} \\
& 25+9=c^{2} \\
& 34=c^{2} \\
& \sqrt{34}=c \\
& \text { - }- \text { - }
\end{aligned}
$$

6.2 \#38 Solve the right triangle. (Find all missing sides and angles.)

$$
\begin{aligned}
& \frac{\sin 75}{1}=\frac{100}{c} \\
& c \sin 75=100 \\
& c=\frac{100}{\sin 75} \\
& c \approx 103.53
\end{aligned}
$$

$$
\tan 75=\frac{100}{b}
$$

